

LORDS INSTITUTE OF ENGINEERING & TECHNOLOGY

THE NEXT EPOCH

INNOVATION, TECHNOLOGY & THE FUTURE OF HUMANITY

JULY 2025

TECH ISN'T JUST EVOLVING

it's reshaping the way we live, think, and connect

DEPARTMENT OF CSE - AIML

Personalizing Healthcare

1

Reconnect with life: breaking free from screens

3

Investigating CSE-AIML department: aspirations, risks, and prospects of this branch

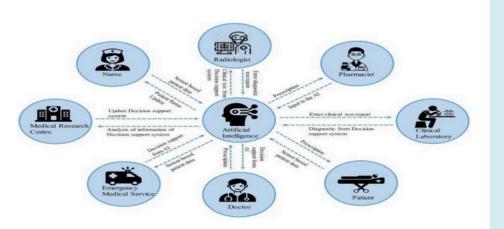
4

The art of hands-free tech in cars

6

Case studies in urban planning and transportation

8



PERSONALIZING HEALTHCARE

Al in Personalized Healthcare

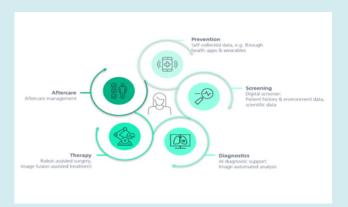
Personalizing healthcare through intelligence artificial (AI) is transforming how medical treatments are delivered. enhancing the precision and effectiveness of care. Al enables personalized healthcare by leveraging vast amounts of data from diverse sources such as electronic health records (EHRs), genetic information, wearable devices, and patientreported outcomes. Here's how applied Al is being personalize healthcare:

Prepared by Ayman Mahboob Shaik

1. Predictive Analytics and Early Detection

Al algorithms can analyze large datasets to predict the likelihood of a patient developing certain conditions based on their medical history, lifestyle, and genetic predispositions. This helps in early detection of diseases such as cancer, cardiovascular diseases, or diabetes, allowing for timely interventions that are tailored to the individual's risk profile.

2. Personalized Treatment Plans


Al-driven tools can assist healthcare providers in developing personalized treatment plans by analyzing how similar patients have responded to different therapies. For example, Al can analyze genomic data to recommend targeted therapies for cancer patients, ensuring treatments are suited to the individual's unique genetic makeup.

3. Precision Medicine

Al plays a critical role in precision medicine, where treatments are tailored not just to the disease but also to the individual's unique genetic, environmental, and lifestyle factors. For example, Al algorithms can identify which drugs are likely to be most effective for a particular genetic mutation or biomarker.

4. Remote Monitoring and Virtual Health Assistants

Wearable devices and health apps powered by Al can continuously monitor patients' vital signs, activity levels, and other health metrics. Al systems can analyze this data in real time to provide personalized feedback, alert patients or doctors to potential health issues, and adjust care plans accordingly. Virtual health assistants powered by Al, such as chatbots or digital health coaches, can also provide patients with personalized advice and support.

7. Drug Development

Al accelerates the drug development process by predicting which drug compounds are most likely to be effective for specific patients or diseases. It can help identify potential new therapies for conditions that have historically been difficult to treat and optimize clinical trial designs by identifying appropriate candidate groups.

5. Clinical Decision Support

Al-based clinical decision support systems (CDSS) help clinicians make more informed, data-drivendecisions. These systems can process patient-specific data (including medical history, lab results, and imaging) to recommend personalized diagnostic and treatment options, thus improving outcomes while reducing the risk of human error.

6. Genomic Medicine

Al is particularly valuable in genomic medicine, where it helps to analyze vast amounts of genomic data to identify genetic mutations or variations linked to disease. This allows healthcare providers to design more precise interventions, such as gene therapies, based on the patient's genetic profile.

7. Drug Development

Al accelerates the drug development process by predicting which drug compounds are most likely to be

effective for specific patients or diseases. It can help identify potential new therapies for conditions that have historically been difficult to treat and optimize clinical trial designs by identifying appropriate candidate groups.

8. Patient-Centered Care

Al can also help ensure that healthcare systems are more patient-centered by providing individuals with tailored health recommendations, enabling them to be more actively involved in their own care. Personalized recommendations can include everything from diet and exercise regimens to mental health support and chronic disease management strategies.

RECONNECT WITH LIFE: BREAKING FREE FROM SCREENS

DISCONNECT TO RECONNECT: REDISCOVER LIFE BEYOND SCREENS

Screens are everywhere—phones, laptops, and TVs. They're essential for work, socializing, and entertainment. But there's a hidden cost: screen addiction. It's affecting our mental, physical, and emotional health, and it's time we took notice.

screen addiction means spending too much time on devices, often leading to negative effects in our daily lives.

It's while technology unites, it also alienates people, since most screen time means fewer people in real life. Some ways of improving digital well-being are putting limits on the screen, defining device-free zones, and doing something that has no relationship with screens such as reading or exercising. The 20-20-20 rule helps to minimize eye strain and keep concentration: viewing something 20 feet away for 20 seconds every 20 minutes.

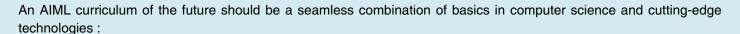
Achieving digital well-being is not just an individual effort—it requires societal support. Parents and educators should teach healthy screen habits, employers must promote work-life balance, and tech companies can create apps that prioritize user health. By making small, mindful changes, we can regain control of our screen time and improve our overall well-being. It's time to reclaim our lives from the screens

Reconnecting with loved ones: Embracing moments offline for better well-being.

Finding balance requires effort from all of us—parents, educators, employers, and tech companies. By making small change to our screen habits, we can improve our health and relationships. As Jim Rohn said, "You are the average of the five people you spend the most time with." Make sure those moments include real-life connections, away from screens.

INVESTIGATING CSE-AIML DEPARTMENT: ASPIRATIONS, RISKS AND PROSPECTIVE OF THIS BRANCH.

In recent years a prospective branch, with specialisation in artificial Intelligence and Machine Learning has been the Computer Science and Engineering (CSE) department, which is increasingly gaining ground in engineering education. It has strong prospects for the future and industries which make it one of the most sought after disciplines for technocrats. Here, we explore the building blocks of a well-functioning CSE-AIML department with particular emphasis on institutes like Lord Institute of Engineering and Technology (LIET).

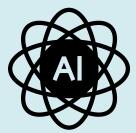

Why CSE-AIML? Significance & Dispersion of the second seco

Artificial Intelligence and Machine Learning technologies are emerging as powerful game changers in the fields of medicine, technology, finance, entertainment and manufacturing. Market expansion Its the greatest. AIML technologies are transforming the way we solve problems and develop new products which will contribute to the rapid growth of the global AI market for the foreseeable future.

- Industry Expansion: Al and ML technologies are transforming industries and creating new markets.
- Opportunities: Some of the roles that are in high demand for graduates include Data Scientist, AI/ML Engineer, AI specialist and NLP expert.
- · Future Prospects: New technologies such as generative AI, autonomous systems and cognitive
- · computing will ensure that the need for ICT professionals never runs out.

Key Elements of Satisfactory CSE-AIML

- · Decker Institute of Artificial Intelligence and Machine Learning
- · An all-inclusive Curriculum



Core Topics: Data representation, Spanning, schema, DBMS and Software Development

Advanced Areas: Learner oriented artificial intelligence, three dimensional learning models, visioneering, language acquisition models/NLP, and ethical issues pertaining Artificial Intelligence.

Experiential Learning: Industry relevant multidisciplinary projects and work experience complemented with elective courses in engineering, neuroscience, nanotechnology, and robotics or IoT.

Skilled Professors

Prepared by Prepared by Ayman Mahboob Shaik

Quality Education is undergirded by the quality of instructors. There has to be a priority placed on professors who have exemplary international requisite credentials, who have an academic publication track record and extensive relevant work experience.

Research and innovation project management and participation lets students experience valuable skills that compliments simulated classroom education.

Up-to-date Infrastructure

Technical Labs: Use of powerful GPUs, cloud resources (like AWS, Google Cloud) and Al/ML tools such as TensorFlow, Pytorch, Keras etc.

Collaborative Spaces: Space's for Engagement or Meetings for Interaction with colleagues on different aspects of the projects respectively

Industry Affiliations and Experience

Cooperation with large companies and start-ups gives the opportunity to participate in internships, courses and lectures by industry specialists.

This partnership closes the gap between theory learned in school, and practices on the field.

Research opportunities

AlML students will be able topartake in the leading areas of research and development activities such as: Generative Al development in applications such as ChatGPT. Autonomous systems which include self-driving cars, and drones. Al for social good like accessibility tools and disaster management systems. The promotion for publishing research papers and attending conference helps to increase the credibility of the academics and professionalism. How large does AIML education have? As much as AIML has a lot of opportunities, there are challenges that students and institutions are required to resolve: Tough High Degree: Mathematics (Linear Algebra, statistics, calculus) Skills Are A Must Possess. Evolving Field: Needs that will afford learning throughout the life.

Ethical Issues: Such as algorithmic bias, data privacy rights, unemployment caused by AI etc. are all issues that require critical thinking. What Next? Career Pathways Graduates of the CSE-AIML programs have an array of about twentyfour career options: Core roles: Data Scientist, AI/ML Engineer, Research Scientist. Adjacent roles: Software Developer, DevOps Engineer, AI Product Manager. Startups: Such knowledge can be the foundation through which one can create their own AI based startups. Enriching Student Experience Co-Curricular Activities: Such as Hackathons and coding competitions or AIML based clubs give students the competitive edge. Placement Support: Placement cells that are effective with a proven history

Placement Assistance:

Students look up to robust placement cells with a proven record of placement in the leading tech companies, as added advantage.

In summary

A sound CSE-AIML graduate program will help his/her graduates to acquire the necessary skills and knowledge on the advanced technologies in the constantly evolving world in a balanced manner enabling them to meet the real needs and opportunities of the society. For example, Lords Institute of Engineering and Technology LIET is in particular well suited to the ideas of future technologists as such institution aims to combine studies, industries and original ideas.

If you are a potential student or an industry partner ah today or rather irreversibly investing in ADD AIML would be the education of the more ways.

THE ART OF HANDS FREE TECH IN CARS

Autonomous driving is a fascinating and rapidly evolving field aimed at creating vehicles that can operate without human intervention. Let us breakdown the core elements, recent advancements, and the challenges of self driving cars:

Core Technology Behind Autonomous Driving Autonomous vehicles (AVs) rely on various technologies to perceive, analyze, and react to their environment:

- 1.Sensors: Cameras, radar, LIDAR (light detection and ranging), and ultrasonic sensors help the vehicle understand surroundings, measure distances, and detect obstacles.
- 2. Machine Learning and AI: Machine learning algorithms process sensor data, recognizing objects (cars, pedestrians, traffic signs) and predicting movement patterns.
- 3. GPS and Mapping: High-definition maps and GPS provide location data and help AVs understand the terrain and road network.
- 4. Control Systems: The car's response mechanisms, such as braking, acceleration, and steering, are controlled by real-time data processing.

Levels of Autonomy

Autonomous driving is classified by the SAE (Society of Automotive Engineers) into six levels, from 0 (no automation) to 5 (full automation). **Level 2:** Partial automation is common today, where the car can steer, accelerate, and brake but still requires a driver.

Level 4 & 5: Levels where the car could operate without human intervention in certain or all conditions, respectively, are the ultimate goal but are still under development.

Fig2 : 1969 Chevy Corvette Stingray (Level 0)

Fig3: 2010 Lexus ES (Level 1)

Fig4 : 2025 Chevy Suburban (Level 2)

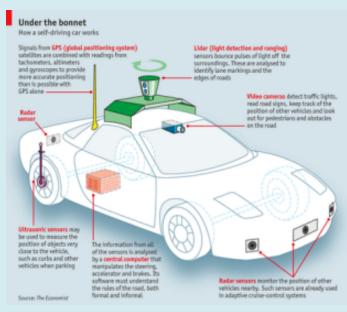

Fig5: 2024 Tesla Model S-FSD Version (Level 3)

Fig6 : Waymo Taxi-Jaguar I Pace (Level 4)

Prepared by Mohammed Waseemuddin

How Autonomous Driving Works

AVs use a range of technologies to perceive, interpret, and interact with their surroundings. High-resolution cameras, radar, and LIDAR systems allow the vehicle to "see" and measure distances to nearby objects. Using machine learning and AI, AVs process this data, recognize obstacles, and anticipate potential movements of other vehicles and pedestrians. GPS systems and high-definition maps give AVs a precise understanding of their location, while control systems decide the vehicle's response,

Fig7 : Working of a Self Driving Car

Recent Advancements

In recent years, AV technology has progressed rapidly:

Improved AI Models: Companies like Tesla and Waymo have enhanced machine learning models to interpret complex human behavior, making AVs safer and more predictable.

Virtual Simulations: AVs are tested through millions of miles of virtual driving to identify and address potential failures before real-world testing. **5G Connectivity:** High-speed, low-latency 5G networks improve real time communication, allowing AVs to react faster to dynamic road conditions.

Collaborative Infrastructure Development: Governments and companies are collaborating to create AV-friendly infrastructure, such as smart traffic signals and dedicated AV lanes.

Challenges in Achieving Full Autonomy

Despite the impressive progress, there are notable challenges on the path to fully autonomous driving:

Safety and Reliability: Ensuring AVs operate safely in unpredictable conditions is critical. AVs must perform flawlessly to gain public trust. **Ethics and Regulation:** Deciding accountability in accidents and addressing ethical questions (e.g., prioritizing pedestrian safety) are complex issues.

Infrastructure Needs: Roads, intersections, and highways will need updates to facilitate AV navigation effectively.

Public Acceptance: While the technology is advancing, many people remain apprehensive about the idea of fully autonomous vehicles on public roads.

Due to these reasons many countries are failing or stepping back to introduce self driving cars.

Fig8 : Tesla crashed due to autopilot

Conclusion

Autonomous driving is more than a technological achievement—it is a step towards reshaping our transportation ecosystem. With ongoing advancements and collaborative efforts, AVs hold the potential to redefine our roads, making travel safer, more efficient, and more inclusive.

References

Society of Automotive Engineers (SAE). (2023). "Levels of Driving Automation." SAE International.

CASE STUDIES IN URBAN PLANNING AND TRANSPORTATION

Explore innovative case studies showcasing the latest advancements in urban planning, smart city initiatives, and transportation route optimization

CASE STUDY 1: URBAN PLANNING AND SMART CITIES

Key Challenges

Outdated infrastructure, traffic congestion, air pollution, and lack of green spaces in growing urban areas.

Objectives

Transform the city into a sustainable, livable, and tech-enabled environment for residents.

Solutions

Integrated sensor networks, renewable energy, smart traffic management, and expansive green spaces.

INNOVATIVE SOLUTIONS IMPLEMENTED

1. Smart Grid:

Intelligent energy distribution system that integrates renewable sources and optimizes consumption.

2. Autonomous Vehicles:

Self-driving buses and cars that reduce traffic and emissions through coordinated routing.

3. Urban Sensors:

Network of IoT devices that monitor air quality, water usage, and other vital urban metrics.

MEASURABLE IMPACTS AND OUTCOMES

1. 30% Reduction:

In traffic congestion and commute times through smart traffic management.

2. 25% Decrease:

In energy consumption and carbon emissions due to smart grid and renewable integration.

3. Increased Livability:

with 40% more green spaces and improved air quality for residents.

CASE STUDY 2: TRANSPORTATION AND ROUTE OPTIMIZATION

Challenges

Inefficient public transit, traffic congestion, and lack of last-mile connectivity.

Solutions

Dynamic routing, autonomous vehicles, ride-sharing, and seamless intermodal connections.

Objectives

Develop an integrated, multimodal transportation system to improve mobility and accessibility.

Impacts

Reduced emissions, increased ridership, and improved quality of life for residents.

INNOVATIVE SOLUTIONS IMPLEMENTED

1. Real-Time Data:

Sensors and Al-powered analytics to monitor and forecast transportation demand.

2. Multimodal Routing:

Algorithms that optimize routes across buses, trains, rideshare, and micromobility.

3. Autonomous Fleets:

Self-driving buses and cars that provide on-demand, efficient transportation.

MEASURABLE IMPACTS AND OUTCOMES

1. 20% Reduction:

In greenhouse gas emissions from transportation.

2. 35% Increase:

in public transit ridership across the city.

3. 25% Decrease:

In average commute times for residents.

